Indian Statistical Institute, Bangalore Centre M.Math. (I Year) : 2015-2016 Semester I : Backpaper Examination Measure Theoretic Probability

Dec. 2015 Time: 3 hours. Maximum Marks : 100

Note: Notation and terminology are understood to be as used in class. State clearly the results you are using in your answers.

- 1. (15 marks) Let $\Omega = \mathbb{R}$, and $\mathcal{B}(\mathbb{R})$ denote the Borel σ -algebra of \mathbb{R} . Let $\mathcal{K} = \{[a,b] : a \leq b, a, b \in \mathbb{R}\}$. Show that $\sigma(\mathcal{K}) = \mathcal{B}(\mathbb{R})$. (Here $\sigma(\mathcal{K})$ denotes the smallest σ -algebra containing \mathcal{K} .)
- 2. (10 + 10 = 20 marks) (i) Let $F(\cdot)$ be a distribution function on \mathbb{R} . Show that there exists a probability space $(\Omega, \mathcal{B}, \mathbb{P})$, and a real valued random variable X such that $F(\cdot)$ is the distribution function of X.

(ii) Let $f(\cdot)$ be a probability density function on \mathbb{R} . Show that there exists a real valued random variable X such that $f(\cdot)$ is the probability density function of X.

3. (15 + 15 + 10 = 40 marks) (i) Let X be a real valued random variable with characteristic function φ . Suppose X has finite expectation. Show that φ is differentiable, with a uniformly continuous derivative.

(ii) Let μ_a denote the distribution of a random variable having exponential distribution with parameter a > 0. Find the characteristic function of μ_a . Using (i), find the expectation of the exponential distribution with parameter a.

(iii) Let $a_n \to a$, where $a_n, a > 0$. Using (ii), show that $\mu_{a_n} \Rightarrow \mu_a$, as $n \to \infty$.

4. (25 marks) Let $\{X_n : n = 1, 2, \dots\}$ be a sequence of independent identically distributed real valued random variables with strictly positive density function. Let $F(\cdot)$ denote the common distribution function. Show that there exist constants $m \in \mathbb{R}, \ \sigma^2 > 0$ such that for any $y \in \mathbb{R},$

$$\lim_{n \to \infty} P\left(\frac{1}{\sigma \sqrt{n}}[F(X_1) + \dots + F(X_n) - nm] \le y\right) = \Phi(y),$$

where $\Phi(\cdot)$ denotes the distribution function of the standard normal distribution. Also find the constants m, σ^2 .